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We experimentally observe fractal patterns of chaotic light scattering in regular polyhedral mirror ball
structures that consist of spherical reflectors located at the vertices of polyhedra as optical scattering devices.
We measure the fractal dimension of the basin boundaries of the light scattering patterns in the regular
polyhedral mirror ball structures.
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I. INTRODUCTION

Photonic crystals have been intensively investigated for
many years as optical devices to control the localization and
propagation characteristics of photons. Recently, photonic
fractals have been invented �1�, which are three-dimensional
fractal cavities based on the Menger sponge structure fabri-
cated from epoxy resin by stereolithography. Localization of
electromagnetic field at a resonant frequency can be achieved
in the photonic fractals. The use of fractal characteristics
may have a potential to control and localize photons in a
different way from the conventional optical devices, and may
lead to new engineering applications of photon localization
devices.

As an example of fractal optical devices, a three-
dimensional optical billiard has been proposed �2,3�, in
which the centers of four spherical reflectors are located at
the vertices of a regular tetrahedron. Light was injected into
the optical billiard and fractal patterns of light scattering with
the Wada basin property were found. A similar configuration
has been used as a chaos mirror �4�, which provides free-
space optical beam links for optical wireless networks. The
chaos mirror has a feature that a one-dimensional spread of
input optical rays results in a two-dimensional spread of the
rays reflected from the chaos mirror. The characteristics of
fractal optical devices need to be well understood to investi-
gate the behavior of photons in fractal optical devices. The
analysis of the fractal dimension �5� is one of the basic char-
acteristics of fractal structures.

In this paper we experimentally observe fractal patterns of
chaotic light scattering in regular polyhedral mirror ball
structures. We analyze the fractal dimension of the basin
boundaries of the light scattering patterns by using the mod-
els obtained from our experimental observation.

II. EXPERIMENTAL OBSERVATION

We extend the idea of the optical billiard and the chaos
mirror with a tetrahedral structure �2–4� to regular polyhe-
dral mirror ball structures. Figure 1 shows five examples of
the regular polyhedral mirror ball structures. The five regular
polyhedra correspond to a regular tetrahedron �4�, hexahe-
dron �6�, octahedron �8�, dodecahedron �12�, and icosahe-
dron �20�, respectively, whose number corresponds with the
number of the faces. The centers of spherical reflectors are
located at the vertices of a polyhedron whose edge length is

equal to the diameter of the spherical reflectors. Each of the
spheres is in contact with the nearest-neighboring spheres.
We used mirrored balls with 85-mm diameter as spherical
reflectors in our experiment.

To observe chaotic light scattering in the regular polyhe-
dral mirror ball structures, light emitting diodes �LEDs� with
different colors are located at the center of the faces of the
polyhedra. We used N−1 LEDs with different colors on the
faces of the polyhedron, where N is the number of the faces.
The light beams from the LEDs are injected and scattered in
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FIG. 1. Regular polyhedral mirror ball structures. �a� Regular
tetrahedron, �b� regular hexahedron, �c� regular octahedron, �d�
regular dodecahedron, and �e� regular icosahedron.
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the mirror ball structure. We observed a light scattering pat-
tern in the structures from one face without LEDs by using a
digital camera.

Figure 2 shows the pictures of the light scattering patterns
in the five regular polyhedral mirror ball structures. Self-
similarity of the light scattering patterns is observed as frac-

tal. For the tetrahedral structure shown in Fig. 2�a�, many
triangle patterns with different colors and sizes are shown in
the triangle region with some contraction ratios. These tri-
angle patterns indicate the light source coming from one of
the faces of the tetrahedron, which can be considered as a set
of initial conditions of the light scattering. We thus call the
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FIG. 2. �Color online� Pictures of fractal patterns of chaotic light scattering in the five regular polyhedral mirror ball structures. �a�
Regular tetrahedron, �b� regular hexahedron, �c� regular octahedron, �d� regular dodecahedron, and �e� regular icosahedron.
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FIG. 3. �Color online� Models of fractal patterns of chaotic light scattering in the five regular polyhedral mirror ball structures. �a�
Regular tetrahedron, �b� regular hexahedron, �c� regular octahedron, �d� regular dodecahedron, and �e� regular icosahedron.
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color patterns basins �3�. The boundaries of these basins are
very complex and it is considered as fractal basin boundaries
�3,5�. Different fractal patterns are observed in the five regu-
lar polyhedral mirror ball structures, and the basin bound-
aries look more complex as the number of the faces is in-
creased.

III. MODEL

Based on the experimental observation of Fig. 2, we cre-
ated models for the observed fractal patterns in the five regu-
lar polyhedral mirror ball structures, as shown in Fig. 3. The
color patterns indicate the basins of light scattering, corre-
sponding to the faces of the polyhedron. We modified the
distorted patterns at the edge of the entire region, so that we
can extract the essence of the fractal patterns from Fig. 2.
The structures of these models are summarized in Table I.
Note that the shape of each color pattern is determined by the
shape of the faces of the polyhedra, whereas the shape of the
entire region is determined by the number of the nearest-
neighboring vertices. The fractal patterns of the hexahedron
and octahedron are complementary �triangle and square�, as
well as those of dodecahedron and icosahedron �pentagon
and triangle�, as shown in Table I. The basin boundaries are
very complicated for all the five structures, as shown in Fig.
3.

IV. FRACTAL DIMENSION

A. Self-similar dimension

We calculated the fractal dimension of the basin bound-
aries of the light scattering patterns in the five regular poly-
hedral mirror ball structures. We refer to the dimension of the
basin boundaries as measured in a two-dimensional slice as
shown in Figs. 2 and 3 �3�. The fractal dimension is thus
between 1 and 2. We used two methods to measure the frac-
tal dimension: the self-similar and box-counting dimensions.
We first calculated the self-similar dimension. The self-
similar dimension Ds can be analytically calculated by �5�,

�
i=1

M

bi�ai�Ds = 1, �1�

where a is the contraction ratio of the size of self-similar
patterns and b is the expansion ratio of the number of in-
creasing self-similar patterns. The size and number of the
self-similar patterns are changed with the ratios of an and bn

at the n-stage of iteration, respectively, where n indicates the
number of reflection of the light on the spheres. M is the total
number of the combination of different ai and bi. a and b
may be different at different regions of the models. For ex-
ample, the regular hexahedral mirror ball structure and the
corresponding fractal pattern model are shown in Fig. 4.
There are three different combinations of the distances of the
neighboring spheres from one sphere, as indicated by A, B,
and C in Fig. 4�a�. The light reflection from these neighbor-
ing spheres results in the fractal patterns with different sizes,
as indicated by A, B, and C in Fig. 4�b�, and there exists
different ratios of a and b in the model of Fig. 4�b�. In fact,
b corresponds to the number of neighboring spheres at a
certain distance, i.e., three neighboring balls are located at a
distance of A �b1=3�, other three neighboring balls are lo-
cated at a distance of B �b2=3�, and one ball is located at a
distance of C �b3=1�. On the other hand, ai is estimated from
the contraction ratio of the size of the corresponding part in
the model �a1=0.400 for A, a2=0.200 for B, and a3=0.200
for C in Fig. 4�b��.

The values of ai and bi are obtained from the models in
Fig. 3 and the self-similar dimension is calculated. The result
of M, ai, bi, and Ds are summarized in Table II. Ds of the
tetrahedron is identical to that of the Sierpinski gasket, since
the models are exactly the same as shown in Fig. 3�a�. Ds of
the tetrahedron and hexahedron are very close to each other.
Ds of the icosahedron is the maximum value of the fractal
dimension in the five regular polyhedral mirror ball struc-
tures.

The analytical estimation of the self-similar dimension is
effective. However, there is some inaccuracy of the contrac-
tion ratios of ai for the octahedron, dodecahedron, and icosa-
hedron, since some distortion of the fractal patterns occurs
near the edges of the entire region due to the reflection from
a spherical mirror.

TABLE I. Summary of the structures of the fractal models
shown in Fig. 3.

Polyhedron Each pattern Entire region

Tetrahedron Triangle Triangle

Hexahedron Square Triangle

Octahedron Triangle Square

Dodecahedron Pentagon Triangle

Icosahedron Triangle Pentagon

A

B

C

(a) (b)

A
B

C

FIG. 4. �Color online� �a� Regular hexahedral mirror ball struc-
ture and �b� the corresponding fractal pattern model. �a� Three dif-
ferent distances of the neighboring spheres from one sphere are
indicated by A, B, and C. �b� Three different patterns with different
sizes are indicated by A, B, and C.
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B. Box-counting dimension

We next used the box-counting dimension of the basin
boundary based on the models shown in Fig. 3. The box-
counting dimension Dc can be calculated by �5�,

Dc = lim
�→0

ln N���
ln�1/��

, �2�

where � is the a box size �length� and N��� is the number of
boxes needed to cover the basin boundary. We used a com-
mercially available software �Benoit, TruSoft International
Inc.� for the calculation of the box-counting dimension of the
basin boundaries for the models shown in Fig. 3. We ex-
tracted the edges of all the fractal patterns and deleted the
colors in the models. We covered the edges with �-size boxes
and counted the number of the boxes to calculate the box-
counting dimension of the basin boundaries.

We calculated the box-counting dimension of the basin
boundaries for the five regular polyhedral mirror ball struc-
tures. Figure 5 shows the result of box-counting dimension
of the fractal models at the different stages of the iteration n
�i.e., the number of light reflection from the spherical mir-
rors�. As the number of the iteration n is increased, the box-
counting dimension increases and saturates at a certain value,
which corresponds to a reliable value of the box-counting
dimension, as indicated in Fig. 5.

Figure 6 shows the summary of the self-similar and box-
counting dimensions of the basin boundaries of the fractal
models for the five regular polyhedral mirror ball structures.
The self-similar and box-counting dimensions match each
other with the maximum error of 1.7%. It is found that the
fractal dimension increases as the number of the faces of the
polyhedral structures is increased, except the dodecahedral

TABLE II. Summary of the self-similar dimension of the fractal
models for the five regular polyhedral mirror ball structures.

Polyhedron M ai bi Ds

Tetrahedron 1 0.500 3 1.585…
Hexahedron 3 0.400 3 1.597…

0.200 3

0.200 1

Octahedron 2 0.427 4 1.773…
0.293 1

Dodecahedron 5 0.258 3 1.560…
0.172 6

0.102 6

0.0848 3

0.0781 1

Icosahedron 3 0.357 5 1.854…
0.194 5

0.123 1
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FIG. 5. Box-counting dimensions of the fractal models for the
polyhedral mirror ball structures as a function of the number of
iterations n. �a� Regular tetrahedron, �b� regular hexahedron, �c�
regular octahedron, �d� regular dodecahedron, and �e� regular
icosahedron.
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FIG. 6. �Color online� Summary of the self-similar and box-
counting dimensions �Ds and Dc� of the fractal models for the five
regular polyhedral mirror ball structures.
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�12-face� structure. For the dodecahedral structure, the pen-
tagonal color patterns share the large region and the basin
boundaries are not as long as the other polyhedral structures.

The fractal dimension obtained in our study may be an
important measure to characterize optical scattering devices
with fractal structures. The fractal dimension may be related
to the Q value as optical confinement devices. The investi-
gation of the relationship between the fractal dimension and
the functionality of fractal optical devices is our future work.

From physics point of view, we only take into account ray
optics to analyze the fractal patterns since the size of the
spherical structures is much larger than the wavelength of
visible light. The effects of wave optics and quantum optics
may become dominant when the size of these structures is
decreased in the order of the optical wavelength. We expect
to find more interesting behavior of photons in such nanos-
cale fractal optical devices.

V. CONCLUSION

We have experimentally observed fractal patterns of cha-
otic light scattering in the five regular polyhedral mirror ball
structures that consist of spherical reflectors located at the

vertices of polyhedra as optical scattering devices. We have
obtained the pictures of the fractal patterns in the regular
polyhedral mirror ball structures and constructed the models
for the five fractal patterns. We have measured the fractal
dimension of basin boundaries of the light scattering patterns
in the regular polyhedral mirror ball structures by using the
self-similar and box-counting dimensions. The two dimen-
sions agree well with each other. We have found that the
fractal dimension increases as the number of the faces of the
polyhedral structures is increased, except the dodecahedral
structure. The characteristics of the fractal patterns of chaotic
light scattering may be useful for optical devices using frac-
tal, such as photon localization devices.
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